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Abstract. After introducing a novel recombination term representing light-induced bimo- 
lecular recombination processes we calculate time-dependent profiles for electron and hole 
density and electric field across a highly insulating material (atactic polystyrene) subjected 
to ultraviolet radiation and to the application of a potential at the illuminated electrode. The 
time-dependent current density is calculated for a wide range of parameters over arbitrary 
long intervals of time. In the weak-field limit the asymptotic behaviour of the photocurrent 
follows the Onsager electron-hole pair generation mechanism as observed experimentally 
in the strong-field case. 

1. Introduction 

The electrical behaviour of highly insulating polymers is, in general, quite complicated 
experimentally, and difficult to model. The dark conductivity of ‘virgin’ atactic poly- 
styrene, which has been cast in the dark and never exposed to light, is very different 
from that measured after exposure to light [ 11. This may be due to a space charge, which 
may be formed by photo-emission or by separation of the heavy electrons and light holes 
and deep trapping of holes. In our case the space charge is believed to be trapped 
electrons; it is generated by the illumination, and is extremely stable thereafter. Passage 
of current, presumably due to holes (although ionic conductivity may also play a role in 
this material [2]), does not affect this space charge. The photoconductivity of this 
material, which can be observed only on non-virgin samples (time constants are too long 
to permit measurements of virgin material) is also very complicated [3]. 

While less severe problems arise in ‘good’ photoconductors, Chance and Braun 
have reported [4] differences in behaviour between virgin and non-virgin samples of 
anthracene, and they modelled only the behaviour of the simpler, virgin material. Such 
effects may be compared with, and are perhaps related to, the Staebler-Wronski effect 
in amorphous silicon [5] and to the photo-effect in chalcogenide glasses [6]. The nature 
of photo-effects in insulating polymers is far less clear. However, there are a certain 
number of conditions that any model must satisfy. 
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If the creation of electron-hole pairs by light produces trapped electrons which do 
not recombine in the dark, even in the presence of an injection current , then illumination 
must also lead to recombination. Otherwise, the space charge would increase indefi- 
nitely, which is not the case. The mechanism for such a light-induced effect could be 
simply the production of transitory recombination centres, or it could be a directly 
stimulated process. In either case, existing models of photoconductivity [4,7] or of 
electron-beam-induced conductivity [8-101 do not allow for such a mechanism. 

We present here a model that conforms as closely as possible to what we believe is 
an appropriate description of conductivity and photoconductivity in atactic polystyrene 
[l, 31. This includes the possibility of hole injection currents, a fixed value for the hole 
mobility (any trapping is assumed merely to contribute to this value) and negligible 
mobility for electrons, pair generation by the Onsager mechanism, and the light-induced 
recombination, which is the main new feature. The uv light, which is capable of gen- 
erating pairs, has a penetration length that is short compared with the sample length. 

As we wish to take account of the exponential decay of the light intensity, and of the 
true field and charge profiles which result, it is not possible to establish a true steady- 
state solution. If we wait extremely long times, pairs will be present at any distance from 
the origin. The calculation is therefore a dynamic one, with an effective steady state 
established at times long compared with the drift times of the carriers. This approach is 
formally similar to the one adopted by Donovan and Wilson [ll] in the case of PDATS 
(the polymer bis(p-toluene sulphonate) ester of 2,4-hexadiyne-176-diol) and has the 
advantage, however, that we obtain information concerning the evolution of the system 
with time. 

We base our approach on the semiconductor equations, which are essentially the 
continuity equations for electrons and holes and Poisson’s equation. These are expected 
to be valid for the low-field regime we are interested in. Since we perform a time- 
dependent simulation under variable illumination and applied voltage, the semi- 
conductor equations are subjected to time-dependent boundary conditions. We trans- 
form the equations in a way such that the time-dependent boundary-condition problem 
is mapped onto an initial-value problem. The values obtained for the electric field profile 
in the sample, the electron and hole density profiles are checked with Poisson’s equation 
at each point and each timestep. Moreover, the overall solution is tested by recalculating 
the voltage difference and comparing it to the applied one at each timestep. 

The asymptotic values of the photocurrent are found to obey the Onsager electron- 
hole pair generation mechanism at low fields in agreement with the experimental behav- 
iour at high fields and with the expected analytic long-time limit of the model considered. 

This paper is organised as follows. Section 2 contains the model and the equations 
of motion we use. Section 3 presents the solution of the equations. Section 4 contains 
a description of the simulation results. Section 5 is devoted to the discussion and 
conclusions. 

2. Model 

Consider a parallel-plate capacitor geometry with a photoconducting semiconductor or 
polymer as the dielectric. Assuming that the distance between the capacitor plates is 
much less than the lateral dimensions of the plates with light uniformly illuminating one 
of the plates, the problem is essentially one-dimensional. The dynamics of the carriers 
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is given by the continuity equations for the electrons and holes and by the Poisson 
equation. 

Since the electrons are assumed immobile, the time dependence of their con- 
centration is given by 

dn/at = G(x> - R(x)np. (1) 

We assume a bimolecular recombination mechanism, represented by R ,  and the same 
generation mechanism, represented by G, for both types of carriers. 

The continuity equation for the holes is 

Here, ,pp and D, are field-independent mobility and diffusion coefficient for holes. In 
contrast to most treatments [12], we do not neglect the diffusion term. In the presence 
of the static electron space charge, its importance is not obvious. In addition, its 
inclusion does not significantly complicate the mathematical treatment to be used in the 
solution of the problem. 

The potential, q ( x ,  t ) ,  satisfies the Poisson equation 

a 2 v / d X 2  = (e/&)[+, t )  - p(x ,  91 (3) 

where e denotes the electric charge and E is the dielectric constant of the material. 
The application of a constant voltage requires that the electric field E ( x ,  t)  satisfy 

loL [aE(x,  t) /at] dx  = 0 (4) 

where L is the thickness of the sample. Using equation (4), the definition, E = 
- dv/dx, and the expression for the total current 

J(x, t )  = ep,upE - eD,(dp/ax) + &(dE/at) ( 5 )  

we may write an evolution equation for the electric field: 

Equations (l), (2) and (6) constitute the system of coupled time-dependent partial 
differential equations that we wish to solve. Before we proceed to solve the equations, 
we need explicit forms for G and R. 

We neglect thermal generation and assume that 

G(x,  t )  = 171. (7) 

Here, 17 is the photogeneration efficiency, and I is the absorbed intensity per unit 
thickness, given by 

I = Fa exp( - ax)/[1- exp( - aL)] (8) 

where F is  the incident flux of uv radiation, and a i s  the absorption coefficient. 
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In accordance with experimental evidence for polystyrene [3], we take q from the 
Onsager theory of field-dependent geminate recombination. To first order in the electric 
field, the quantum efficiency is given by 

In equation (9), qo,  the primary quantum yield, is the number of thermalised ion pairs 
per absorbed photon, yo  is the thermalisation length, and r, is the critical distance 
separating geminate charges beyond which instantaneous recombination may be 
avoided. Considering the hole as a sink sitting at the origin, one may estimate the latter 
distance by equating the thermal energy kBT to the Coulomb energy of the electron in 
the field of the hole when their mutual separation is r,. Therefore 

r ,  = e2/47GEk, T (10) 

where kB is Boltzmann’s constant and Tis the temperature. 
As discussed above , we assume that light induces bimolecular recombination: 

OF exp( - ax) 
no (1 - e-aL) 

R = -  

where CJ is an effective cross section and no is an effective carrier density. The ratio o/n0 
is our sole parameter that we vary in order to obtain agreement with the experimental 
values. All the other parameters used are taken from the experiment. 

Finally, the initial condition for the calculation is the presence of a steady-state hole 
injection current, produced by the voltage Vapplied at the illuminated electrode, in the 
absence of any electron space charge (‘virgin’ material). The calculation of this current, 
for arbitrary field at the injecting electrode is described in the Appendix (see also [13]). 
The use of this condition, rather than assuming that the field and light are applied at the 
same time, facilitates and accelerates convergence of the solution. 

3. Solution of the equations 

One possible way to integrate the system of equations (l), ( 2 )  and (6) is to make repetitive 
use of the Taylor expansion 

Z ( x ,  t + At)  = Z ( x ,  t )  + (aZ /d t )A t  (12) 

where Z stands for n,  p or E ,  and At is the timestep. Instead, we use the method of lines 
[14] for space discretisation of equation (12), turning the system of equations into 
one of first-order coupled ordinary differential equations, which may be numerically 
integrated by Runge-Kutta methods, or any other algorithm appropriate for solving 
initial-value problems [ 151. Transforming a boundary-value problem into an initial- 
value one with the help of (4) is similar somehow to the method of invariant embedding 
which is of considerable use in physical problems [16]. 

The numerical scheme, being explicit, embodies one major problem of stability. This 
is related to the choice of the integration timestep, At. Two tests are used to determine 
this step, the first local and the second global. By repetitive use of (12), the values n(x, t ) ,  
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p ( x ,  t )  and E(x ,  t )  are determined at any time t and any point x .  By monitoring at the 
grid points and at each time the quantity 

t)  = I(e/4[n(x, t> - P b ,  41 + (dE/dx)I (13) 

we may check the values of the carrier concentrations and of the electric field. The global 
test consists of monitoring the quantity 

s(t) = ljoL E(x ,  t)  dx  - Vi 

at each timestep. In equation (14), Vis the voltage drop between the illuminated front 
plate and the back plate. 

Decreasing the value of the timestep At results in a decrease of the values of A ( x ,  t )  
and s( t )  as expected from numerically explicit schemes of integration. However the 
smaller the value of At, the longer we have to run the system in order to observe 
significant variations in the behaviour of the physical quantities n(x, t ) ,  p(x ,  t ) ,  E ( x ,  t )  
and the total time-dependent photocurrent 

eD 
L 

p E  dx  - [ p ( L ,  t) - p(0, t ) ] .  

Hence, a trade-off value of At is necessary, such that it keeps the error small and 

We find that the appropriate value of At is a fraction of the characteristic time, zo, 
allows the observation of significant variations in the physical quantities of interest. 

of the system, given by 

indicating that zo is the harmonic mean of a typical drift time p,V/L2 across the sample 
and the time constant for light-induced recombination processes. Depending on the 
values of the physical parameters, zo may range from hours to a small fraction of a 
second. This is discussed in the next section. 

4. Results 

In what follows, we have held certain parameters constant, and varied others. We have 
taken [3] p, = 1.0 x m2 V-l s-l . From the Einstein relation [17] this implies D, = 
kBTpp/e = 2.54 x lo-'* m2 s-l at T = 295 K. The relative dielectric constant is [18] 
E, = 2.55. 

The parameters for the Onsager mechanism are [3] qo = 0.5 and ro = 1.6 x m. 
The absorption constant a i s  [18] lo7 m-'. As both no and U are unknown, we take no = 

m-3 and allow o to vary. We also vary Vand F,  which are experimental parameters. 
In the calculations in which we do this, we take the field at the injecting electrode as 
9.5 X lo4 V m-l when the applied voltage V = 8.0 V and 5.0 X lo4 V m-l when V = 
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Table 1. Values of the current in the dark ( t  = 0) and in the presence of illumination at 
saturation ( t -  m )  for different values of V and u. These results are obtained for a given 
value of F at 8.0 X 1018 photons s-l m-'. The value of the electric field at the injecting 
electrode for the following values of the applied voltage V = -8.0, 8.0, -3.0 and 3.0 V is 
-7.94 x 105,9.5 X lo4,  -2.95 X 105and5.0 x lo4 Vm-'respective1y.Thesevaluesensured 
the same absolute value of the dark current for both signs of a given applied voltage. 

Dark current, Photocurrent at 
Cross section, J ( t  = 0) saturation, J ( m )  

Voltage (V) U cm-*) A cm-2) A cm-') 

-8.0 10-17 -0.473 -0.695 
10-18 -0.473 -1.175 
10-19 -0.473 -2.720 
10-20 -0.473 <-3.2 

8.0 10-17 0.473 0.520 
10-18 0.473 0.615 
10-19 0.473 0.745 
lo-'" 0.473 0.950 

-0.065 1 -0.155 
10-18 - 0.065 1 -0.345 
10-19 - 0.065 1 -0.940 
10-2" -0.0651 <-2.4 

3.0 10-17 0.0651 0.110 
10-18 0.0651 0.122 
10-19 0.0651 0.186 
10-2" 0.0651 0.475 

-3.0 lo-'? 

Table 2. Values of the current in the dark ( t  = 0) and in the presence of illumination at 
saturation (c+ m)  for different values of the electric field at the injecting electrode. The 
results are obtained when the values of the voltage applied V ,  cross section 0 and incident 
flux Fequal8.0 V, m-* and 8.0 x 10" photons s-l m-' respectively. 

Electric field 
(V m-') 

Dark current density, Photocurrent density 
at saturation 
(lo-'' A cm-') 

9.4 x 104 
2.0 x 105 
5.3 x 10s 

0.474 
0.406 
0.005 

0.75 
0.80 
0.90 

3.0 V (see table 1). However we have also varied this field, while holding V ,  F and o 
constant (see table 2). In figure 1, we show the spatial variation of a typical profile of 
hole density at various times. The profile is relatively flat at t = 0, in the dark. 

After the light is switched on, the value of the hole density increases rapidly at the 
illuminated electrode. The profile then becomes smoother as the holes readjust. 

The electron profile, which is zero at any pointx for t = 0, jumps to avalue comparable 
with that of the hole density. However, its spatial variation does not change much with 
time. The concentration drops rapidly with depth, as might be expected (figure 2). 
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10'2 

0 L / 2  L 

X 

Figure 1. Hole density profile at various times. Curve A corresponds to the profile in the 
dark whereas B, C and D correspond to a time equal to 100, 400 and 1000 timesteps 
respectively. The timestep is 14.06 s. The applied voltage V = 8.0 V,  U = m-2, the 
incident flux F = 8.0 X 10IR photons s-' m-2 and the electric field at the injecting electrode 
is 9.5 x lo4 V m-'. 

1015 

loi2 

- 
m 

'E - 
C 

109 
C 

I 
106 t- 

0 L / 8  L / 4  

X 

Figure 2. Electron density profile at various times In the dark the electron profile is zero for 
all values of x Curves A, B and C correspond to a time equal to 100,400 and 1000 timesteps 
respectively The value of the timestep and the rest of the parameters are the same as in 
figure 1 Beyond x = L/8 ,  n (x )  IS essentially zero 

The form of E(x ,  t )  is different depending upon the sign of V .  For V < 0, E(x ,  t> 
evolves such that at any time it is a convex function of x (figure 3), whereas the opposite 
is observed for V > 0 (figure 4). 

Turning to the results for the photocurrent versus time it is observed that, when the 
applied voltage is negative, the absolute value of the current increases smoothly with 
time, reaching a saturation regime faster for higher incident radiation flux F. For the 
highest value of F considered ( lo2' photons s-l m-*) the saturation is reached almost 
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0 7 - -  
I I 

0 L / 2  L 

X 

Figure 3. Electric field profile for a negative applied voltage for two instants of time. Curve 
A corresponds to the profile in the dark whereas B corresponds to 1000 timesteps. Here, the 
timestep is 0.075 s .  The applied voltage is -3.0 V ,  the cross section U = the 
incident flux is 8.0 x lo'* photons s-l m-* whereas the electric field at the injecting electrode 
is -2.95 X lo5 V m-l. 

I 

- 2000 I 
0 112 L 

X 

Figure 4. Electric field profile at various times for a positive applied voltage. Curve A 
corresponds to the profile in the dark whereas B and C correspond to 400 and 1000 timesteps 
respectively. The timestep and all the other parameters are the same as in figure 1. 

instantaneously. In addition, the absolute value of the current at saturation increases 
[19] with F(figure 5 ) .  

When the applied voltage V is positive the magnitude of CJ affects the way the 
photocurrent behaves as a function of time. For relatively small values of CJ the pho- 
tocurrent increases, reaches a maximum at a given time and then starts falling until 
saturation is reached (figure 6). The maximum is sharper for larger values of the flux F 
and is visible at earlier times, whereas the saturation value is pushed progressively to 
later times and to slightly higher values (figure 7). 
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, 8  
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Figure 5. Current density as a function of time for various values of the incident flux F at 
negative applied voltage. Curves A, B,  C and D correspond to Fequal  to 0.1,1.0,10.0 and 
100.0 units of 1018 photons s-l m-z respectively. All curves start from the same point J ( t  = 
0) = -0.651 x 10 - l jA  cm-*, the dark current density value. The time is measured in units 
of a timestep equal to 0.075 s. The laiter and the remaining parameters are the same as in 
figure 3. 

4.- ~- -~ -.. , 
0 500 1000 1500 2000 

t 
Figure 6 .  Current density as a function of time for low and intermediate values of the incident 
flux F a t  positive applied voltage and small u. Curves A, B and C correspond to F equal to 
0.01, 0.05 and 0.5 units of 10IR photons s - '  m-' respectively. All curves start from the same 
dark current density value of 0.473 x lo-'' A cm-*. The time is measured in units of a 
timestep equal to 2.81 s. The latter and the rest of the parameters are the same as in figure 1. 

This behaviour indicates that light-induced recombination processes are not suf- 
ficient at short times to limit the increase in current due to  the relatively small number 
of recombination events. 

On the other hand, when o is relatively large (figure 8) recombination forces the 
current to saturate gently, at short times and small values of flux F, without going through 
a maximum. Increasing Fmakes the saturation time shorter, the initial rise in the current 
steeper and the saturation value of the current larger. 
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~ ----- ~ _ _ T  ~ 

0 500 1000 1500 2000 
t 

Figure 7. Current density as a function of time for large values of the incident flux Fat positive 
applied voltage and small U. Curves D and E correspond to Fequal to 1.0 and 10.0 units of 

photons s-’ m-’ respectively. All other parameters are the same as in figure 6 .  

71 L.1 -__-__ .... --~--____. r_._-_ 

0 200 LOO 600 800 
t 

Figure 8. Current density as a function of time for various values of the incident flux F a t  
positive applied voltage and large u. Curves A, B,  C and D correspond to F equal to 0.1, 
0.5, 1.0 and 10.0 units of 10“ photons s-’ m-’ respectively. All curves start from the same 
current density value of 0.473 x A cm-’. The time is measured in units of a timestep 
equal to 0.281 s. The applied voltage V = 8.0 V,  the cross section U = l O - ” r ~ - ~  whereas the 
electric field at the injecting electrode is taken as 9.5 x lo4 V m-l, 

Keeping the magnitude of the flux Ffixed, table 1 shows that, for the same value of 
cr and absolute value of V ,  the absolute value of the saturation current is larger for V < 0 
than for V >  0. In this table we show some results for the saturation value of the 
photocurrent in comparison with the dark value for given values of the applied voltage 
and the recombination cross section cr. 

In table 2 we show how the initial electric field at the illuminated plate affects the 
value of the dark current after having illuminated the material and the saturation 
photocurrent for given values of the applied potential and recombination cross section. 
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Figure 9. Difference AJ between the asymptotic value of the photocurrent and the dark 
current value versus voltage applied at the illuminated electrode. The initial electric field at 
the positive electrode is held fixed at the value of 0.5 X lo5 V m-' for all applied voltages. 
The rest of the parameters used are the same as those of figure 1. The typical Onsager linear 
dependence with a non-zero intercept of the yield versus the applied field is observed. 

Although the dark current is strongly affected by the initial electric field, the asymp- 
totic value of the photocurrent after the illumination is only slightly affected. This is 
important from the experimental point of view (since the electric field is not accessible 
to any easy measurement) as well as from the numerical simulation one (it indicates that 
the problem at hand is not ill-conditioned). 

The ultimate overall check of our results is the dependence of the saturation pho- 
tocurrent upon the applied voltage. In figure 9, the difference between the values of the 
photocurrent at saturation and in the dark is shown versus the applied voltage. From 
the Onsager theory of geminate recombination, the photo-yield, being proportional to 
this difference, is expected to vary linearly with respect to the applied field when the 
latter is weak. This is exactly what we observe in agreement with the experimental 
behaviour probed at higher fields in which case the photo-yield varies somehow more 
rapidly before it saturates to unity [3]. 

5. Discussion and conclusions 

We have studied time-dependent effects on carrier densities, electric field and pho- 
tocurrent in the presence of a novel light-induced recombination process. This process 
is bimolecular with an amplitude directly proportional to the local light intensity. Using 
the method of lines, the set of partial differential equations is transformed into a set 
of ordinary differential equations and the problem is transformed from a two-point 
boundary-value to an initial-condition one. The solution of the differential system at 
any arbitrary time is obtained by an extremely fast and efficient method based on an 
explicit scheme enabling us to explore the long-time regime of the system for a wide 
interval of selected parameters. 
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During the calculation we have used various local and global checks in order to make 
sure that the results we obtain are free of numerical artefacts. For a given choice of 
voltage drop across the sample we may choose a value of the field at the contact or 
alternatively the number of carriers at the contact such that the Poisson equation and 
the continuity equations are obeyed everywhere in the sample. 

The monitoring of various conserved quantities during the time of simulation 
resembles molecular-dynamics simulations of fluid mechanics or statistical physics, 
where energy, volume or temperature of the system are constants of motion. In our 
case, the voltage across the sample is one global constant of motion whereas neutrality 
is another local constant of motion. 

Within the domain of parameters that we have explored, we have obtained the 
detailed time variation of carrier density profiles, electric field profile and current density 
as a function of applied voltage, light flux and various initial conditions. 

After choosing the latter such that the initial current density changes sign with the 
applied voltage we observed that the long-time limit of the photocurrent is not the same 
for fields applied at the front and the back electrodes. However the asymmetry appears, 
within the range of parameters we have been able to explore, to be opposite to that 
observed experimentally for polystyrene [ 3 ]  in the strong-field case. On the other hand, 
from the long-time behaviour of the photocurrent, we obtained the yield to follow the 
Onsager model for weak fields in agreement with the experimental behaviour at strong 
fields. However, the long-time values of the photocurrent density are independent of 
the light flux whereas in the experiment (figure 6 of [3] )  they behave in a linear fashion 
with respect to the light flux. It is not clear whether this is due to strong-field effects that 
our theory has not accounted for, or to metastability. From an experimental viewpoint, 
it is hard to know how long one has to wait in order to rule out metastability effects. 

Finally, it is extremely difficult to undertake a measurement of the photo-yield for 
weak applied fields [3], and therefore a theory for photoconduction in atactic polystyrene 
valid especially in the strong-field case is needed. This effort, aiming to establish such a 
theory along the same lines of thought described in this work, is in progress. 
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Appendix. Determination of initial conditions 

The sample is in the dark for times t < 0. We consider the system in stationary state with 
no electrons excited. The dark photocurrent is entirely due to the holes, which are 
moving under the action of the potential drop V between the two faces of the sample. 

In the stationary state and absence of electrons the systems (l), (2) and ( 3 )  reduce 
to 
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where C = -J/3, J being the dark photocurrent given by (15) for t < 0. In addition we 
have the constraint on the field: 

V = IoL E(x)  dx. 

The general exact solution of the system (Al) ,  (A2) is given by 

A1”eC C2(Ai), + C3(Bi), 
D p &  i C2Ai(’y) + C3Bi(y) 

E(x)  = - 

where C2, C3 are constants of integration, 

Ai(y) and Bi(y) are Airy integrals, whereas 

denote their corresponding derivatives. The two constants A and C1 are given by 

Let us pick from (A4) a solution that varies monotonically. Hence taking C3 = 0 the 
equation for the field in the dark we choose takes the form 

A1I3eC (Ai), 
E(x )  = -- 

D, E Ai(y I 
This field is not arbitrary since it has first to satisfy condition (A3); it has also to be 
internally consistent since the variable y depends on p(0) and E(0) .  

Given (A7) the hole densityp(x) is given with (A2) by 

The condition (A3) may be rewritten with the help of (A7) in the form 

where y ,  and yo  are the values of y corresponding to x = L and x = 0 respectively. 
It turns out that in order to determine E(x)  and p(x) completely one has to find the 

values of the unknownsp(O), E(O), C1 and C. These constants are not independent of 
each other. 

By analysing the relations existing among these, it appears that E(0)  may be chosen 
arbitrarily. 
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Hence choosing a value for E(0) it is possible to calculate from (A9) the value ofp(0) 
for a given applied potential V and therefore C1 is obtained from (A6) whereas C is 
determined from 

which is nothing but the quantity - ] / e ;  hence the dark photocurrent is determined. 

References 

[1] Crine J P, Dorlanne 0. Sapieha S and Yelon A 1979Annual Report IEEE Conf. on Electrical Insulation 

[2] Anderson R A  and Kurtz S R ,  private communication; see also Sawa G, Lee D C and Ieda M 1977 Japan. 

[3] Crine J P and Yelon A 1980 J .  Appl. Phys. 51 2106 
[4] Chance R R and Braun C L 1976 J .  Chem. Phys. 64 3573 
[SI Staebler D Land Wronski C R 1980J. Appl. Phys. 51 3262 
[6] Street R A  1980 Solid State Commun. 34 157 
[7] Taylor G W and Simmons J G 1972J. Non-Cryst. Solids 8 940 
[8] Snow E H ,  Grove A S and Fitzgerald D J 1967 Proc. IEEE 55 1168 
[9] Taylor D M 1979 Radiat. Phys. Chem. 13 209 

and Dielectric Phenomena p 123 

J .  Appl. Phys. 16 359 

[lo] Churchill J N ,  Holmstrom F E and Collins T W 1979 J .  Appl. Phys. 50 3994 
[ l l ]  Donovan K J and Wilson E G 1981 Phil. Mag. B 44 9 
[12] Lampert M A  and Mark P 1970 Current Injection in Solids (New York: Academic) 
[13] Tannous C and Yelon A 1988 J .  Appl. Phys. 63 224 
[14] Crank J 1984 Free and Moving Boundary Problems (Oxford: OUP) p 181 
[ 151 Gear C W 1971 Numerical Initial-Value Problems in Ordinary Differential Equations (Englewood Cliffs, 

[16] Bellman R and Wing G 1975 A n  Introduction to Invariant Embedding (New York: Wiley) 
[17] Sze S M 1981 Physics ofSemiconductor Devices 2nd edn (New York: Wiley) 
[18] Yano 0 and Wada Y 1971 J .  Polym. Sci. A-2 9 669 
[19] Stutzmann M, Jackson W B and Tsai C C 1985 Phys. Rev. B 32 23 

NJ: Prentice-Hall) 


